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Abstract

An advantage of linear quadratic regulator (LQR) design is that it gives a robust
system by guaranteeing stability margins. This property is used to develop an algorithm
for placing robust poles. The algorithm chooses the positive semidefinite weighung
matrix Q and positive definite weighting matrix R by attempting to place closed loop
poles at a set of desired poles. If the desired poles lie outside the allowable LQR region,
the algorithm finds the achievable poles inside the region that are closest to the desired
poles. The solution requires using a gradient search technique to minimize a weighted
eigenvalue difference cost function. The weighting of the eigenvalue differencc
establishes the relative importance between the poles. In a multi-input multi-output
svstem, the placement of one pole effects the allowable placement region of the other
poles. Thus, the heavier weighted poles have precedence and are forced closer to their
desired location. The algorithm is programmed to rur: on the software package MATLAB
and the related subroutines are discussed. S<veral examples are included to illustrate the
use of the algorithm, some of which can be solved in closed form to compare with the
algorithm’s solution. The results show that this technique ?s accurate for selecting robust

poles at or close to the desired pole locations. L, .




A LINEAR QUADRATIC REGULATOR WEIGHT SELECTION

ALGORITHM FOR ROBUST POLE ASSIGNMENT

1. Introduction

Classical flight control system (FCS) design has evolved from the need to make
aircraft stable and reduce pilot workload. Early designs built stability into the airframe
making them less maneuverable and more susceptible to atmospheric disturbances.
Before World War 1, the first FCS’s were simple gyroscopic autopilots which provided
stability and a return to the desired attitude after disturbances {1:1]. With the increasing
complexity of modem jets, modern FCS’s have become an integral part of the aircraft.
Modern FCS’s not only provide stability and desired responses to specific inputs, but also

suppress disturbances, component variations, uncertainties, and cross coupling effects

In the preliminary design phase, one of the goals of the control engineer is to
design the FCS to allow the airplane to accomplish its mission. The mission requirements
can be broken down into several basic functions which are quantified by specifications.
Aircraft specifications are usually governed by documents such as Mil Standard 1797 and

Federal Aviation Regulations.




The dynamics of the airplane can be approximated by mathematical modeling.
The resulting differential equations establish the characteristic equation of the system.
To evaluate the system, the characteristic equation is factored into roots and plotted in the
complex plane. These points are called poles and they describe the performance and
stability characteristics of the airplane. The math model of the airplane is called the
plant, and certain variables or states (such as roll rate or bank angle) of the plant output
can be fed back into the plant input as shown in figure 1. Using feedback, the poles of
the system can be shifted. In this fashion, the design engineer has the ability to shape the
closed loop performance characteristics of the system to meet the design goals. A variety
of FCS design techniques exist; this report is concerned with pole placement and the

linear quadratic regulator (LQR) method.

Background

Pole placement is a powerful tool for the control system designer. In fact, a
controllable system can be forced to satisfy any desired set of poles with the appropriate
linear feedback [3]. Thus, the designer can shape the system characteristics to meet the
design goals by obtaining a feedback matrix such that the closed loop poles approach the
desired poles. In the single-input case, the feedback matrix is unique for a given set of
poles. If the poles are placed exactly at the desired locations, the unique gains give fixed
robustness characteristics that the designer must live with. In the multi-input case
however, there is not one unique feedback gain matrix that will yield a given set of poles.
In other words, different feedback matrices will give the same poles (or eigenvalues), but

each one of these feedback matrices will have a different mode shape (or eigenvector) for
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Figure 1 State Feedback Diagram

the system. For a multi-input system, Moore has shown that after the poles are placed
an eigenvector set can be chosen from a class of allowable eigenvector sets [4]. This
offers the freedom to first shift the poles and then choose an allowable mode shape from
those available A pole shifting technique for multi-variable feedback given by Retallack
and MacFarlane shows how to select the feedback gain matrix to get any desired pole [5].
Even though their pole placement method can give the desired performance
characteristics, it does not guarantee a robust system. That is, one that is insensitive to
system parameter variations and external disturbances. Another way to think of

robustness in a system is that it remains stable even in the case of model approximation

[




errors or flight condition disturbances. A typical measure of robustness in the frequency
domain is the gain and phase margin.

There are pole placement methods that do achieve a robust system. However, the
poles are usually restricted to a specific region of the complex plane. Simonyi and Loh
developed a pole placement technique that places the closed loop poles into a region
where the robustness to perturbations is determined with a condition number of the
eigenvalue matrix [6]. The linear quadratic regulator (LQR) is an optimal design
technique that guarantees a robust system. Anderson and Moore have shown that the
LQR design guarantees robustness by giving a gain margin of (-6,°) db and a phase
margin of (-60, 60) degrees [7:sect 5.4]. The difficulty lies in choosing a weighting
matrix for the LQR cost function that gives the desired poles, and a great deal of research
has been accomplished in this area. Kawasaki and Shimemura [8) and Wittenmark et. al.
[9] have developed procedures to select weighting matrices to place poles in a specified
region. Methods to place desired poles by finding the state weighting matrix are given
by Graupe [10], Broussard [11], and Solheim [12]. In papers by Wilson and Cloutier [13]
and Sobel and Shapiro [14], a cost function is minimized that has a trade-off between
desired pole placement and desired eigenvector assignment. A method described by
Harvey and Stein [15] uses the state weighting matrix to place the transmission zeros in
the desired pole locations. As the gains are increased, the closed loop poles migrate
towards the desired locations. In this report, an algorithm is developed that finds the
LQR state weighting matrix to place a set of desired poles. The procedure varies the

weighting matrices Q and R to find the smallest difference between an LQR achievable




pole and the desired pole. In contrast, Harvey and Stein calculate Q to place the
transmission zeros and vary R by defining R=pI and letting p tend towards zero. While
some of their poles move to the desired locations, others escape to infinity. The
algorithm given here places all the poles near their desired locations, and none go to
infinity. Also, the algorithm developed in this report allows a weighting to be placed on
selected poles to indicate their relative importance. A similar technique presented by
Graupe finds Q by minimizing the pole difference, but he does not include any weighting
option or vary R. In Broussard’s paper, an algorithm is presented to find Q by
minimizing the feedback gain difference, but the gains for the desired poles must first be
calculated Broussard does introduce a weighting function in his routine, but it is used
to weight the eigenvectors - not to weight selected eigenvalues. The method in this report
does not calculate any eigenvectors. Instead, Moore’s result stated above provides the
option to select an eigenvector set after this pole placement procedure is employed. The
algorithm presented here is simple to use but gives a powerful and useful technique for

pole placement.

Problem Statement
Consider the state space representation of a linear time invariant system
x = Ax + Bu (D
y=Cx 2)
where x is an n-dimensional state vector, u is an m-dimensional input vector and y is an
l-dimensional output vector. A, B, and C are constant matrices of the appropriate size.

Assuming (A,B) is controllable, a linear feedback of the state variables




= -Kx (3)
can be found that shifts the closed loop poles to the desired locations. A problem arises
when a control is required to drive the plant output from a nonzero state to the zero state
for a plant subjected to unwanted disturbances. The problem is to drive the system back
to the zero state as fast as possible while trying to use the smallest control inputs.
Anderson and Moore define this as the regulator problem [7:8]. The optimal solution is
to find the control input u to minimize the quadratic cost function

J= Lm (x'Qx + u'Ru) gt 4)
where Q and R are weighting matrices chosen by the designer. This is the classical linear
quadratic regulator design problem. An advantage of using LQR design is that the system
will always be stable and robust. The optimal solution is given by

K = R'B'P (5)
where P is found from the algebraic Riccati equation

PA+AP+Q-PBR'B'P=0 (6)

The LQR method guarantees robustness, but only allows pole placement in a
specific region, and the poles that give the desired performance may or mayv aot be in
these regions. Therefore it may not be possible to use this method to achieve both
robustness and exact pole placement. In that case a choice would have to be made. This
paper takes the stance that robustness has higher priority over pole placement and hence
uses the LQR technique to choose the poles. When the desired pole is outside the
allowable LQR region, a gradient search is used to find the achievable pole inside the

region that is the closest to the desired pole. This is done by minimizing the cost




function

n

J = Z Vi Qi - A )’ ()

i=l

where
* V, is a positive definite weighting parameter for the poles,
* As.; Is the i® desired pole, and

*A

ach i

is the i achievable pole from LQR
Thus, when J is made small, the system comes close to satisfying the desired pole
spectrum and is simultaneously robust.

Pole weighting is included in the cost function to give priority to poles that need
to be a specific value. Some poles may have limitations that prevent deviations from the
desired locations. For example, an actuator may have characteristics that determine the
location of the pole, and if a designer were to move the pole he would violate the
physical model. To circumvent this, a high weighting is placed on that particular
eigenvalue difference in the cost function.

The LQR pole placement and the pole difference minimization functions have been
compiled in an algorithm that finds the achievable poles. The algorithm is programmed
into macros called MATLAB "m”-files that run on the software package MATLAB. Five
test cases are run with the algorithm. First and second order systems that can be solved
in closed form are compared with the algorithm poles; a third order system is run to show
the effect of weighting an actuator pole; a sixth order example of an F4 from Harvey and

Stein is examined and compared to their results; and an example of an aircraft similar to




an A-4D is examined to demonstrate the effects of robust pole placement on level 1

flving qualities.

Organization
The rest of the report is contained in chapters I through V and appendices A and
B. They are organized as follows:

* Chapter 1I presents the theory of the linear quadratic regulator method and
robustness measures of single-input single-output (SISO) and multi-input
multi-output (MIMO) systems. A section with definitions of observability
and controllability is included to allow a complete presentation of LQR
theory.

* Chapter I1i develops the robust pole placement algorithm. A discussion on
how the algorithm is run on the software package MATLAB is included.

* Chapter IV examines five test cases and discusses the results of each. A
comparison of the Harvey and Stein method of pole placement to the
algorithm is presented and the limitations of the Harvey and Stein method
are discussed.

+ Chapter V gives the conclusions and recommendations for further study.

+ Appendix A supplies a listing of the "m” files used to run the algorithm on
MATLAB.

+ Appendix B gives aircraft data for example five and includes the formulas

for the longitudinal equations of motion.




IL. Theory

Controllabiliry and Observability [17: sect 2.2.9)

Before the linear quadratic regulator theory is introduced, some definitions that are
essential to the theory are presented. A system is completely controllable if any initial
state x, can be shifted to any final state x, in a finite time. In other words, a feedback
matrix exists that can shift a closed loop pole to any desired location. Controllability for
the linear system given in equation (1) is determined by forming the controllability matrix

M. =[B|/AB|AB|...| A"'B] (8)
where n is the number of states. The system is controllable if the rank of M_ is n. If the
system is not full rank, n-rank(M,) gives the number of poles that can not be moved by
feedback.

A system is said to be completely observable if all the states x can be determined
from measuring the outputs y. If a state is not observable, it does not influence the
output and cannot be identified. For the linear system described by equations (1) and (2),
the observability matrix

M, = [CT| ATCT | (ATYCT| ... | (AT)"'CT] 9
can be formed to check if the system is completely observable. If the rank of M, equals
n, the number of states, then the system is completely observable. For an unobservable
system, the number of modes that can’t be observed is equal to n-rank(M,). For

completeness two more definitions need to be given. A system is detectable if all the




unstable (right half plane) poles are observable, and a system is stabilizable if all the

unstable (right half plane) poles are controllable.

Linear Quadratic Regulator [16: sect 3.3; 17: sect 6.1]

If a linear time invariant system is completely controllable, the poles can be placed
anywhere in the complex plane using full state feedback. It makes sense to place all the
poles in the left half plane for stability, but it is also desirable to place the poles far to
the left to make the transients die out quickly. By doing this the system would converge
quickly to its steady state, but the control inputs may be excessively large. The control
input amplitudes are physically limited which puts a constraint on the speed of the system
or how far left the poles can be shifted. The relative importance of system speed to
control input amplitude naturally leads to an optimization problem.

To formulate the linear quadratic regulator problem, first consider the state space
representation of a completely controllable linear time-invariant system

x = Ax + Bu (1)
with the full state feedback law u = -Kx. Then the closed loop system
x =(A-BK)x (10)
has as its poles the eigenvalues of
det(Al - A + BK) (11)
which, with the appropriate feedback gains, can be shifted to any desired location. The
problem is to place the poles such that the system comes to its steady state as fast as

possible with the least control inputs. With this in mind, a criteria to measure the speed

10




in which an initial state is returned to the zero state (which is the desired steady state) is
given by

f‘ x'Qx dt (12)
where the state weighting matrix Q is a positive-definite symmetric real matrix. The
matrix Q is chosen to indicate the relative importance of each state component. The
integral in equation (12) measures the deviation of x from its steady state value during
the time (t,-t,). By minimizing this criterion, the states will now be driven to the steady
state as fast as possible, but the system will experience large control amplitudes. To
prevent the large control amplitudes, a term must be added to equation (12) to include the
input. Thus, the criterion to be optimized is defined by

)= [" (x'Qx + u'Ru) dt (13)

where the controls wéighting matrix R is a positive-definite symmetric real matrix which
determines the relative importance of the control inputs. This integral is called the linear
quadratic regulator cost function or performance index. The problem now lies in finding
the input u that minimizes the performance index J.
From optimization theory, the feedback law u = -Kx that minimizes equation (13)

ast,—is

K =R'B'P (14)
The matrix P is the positive-definite solution (which is unique) of the algebraic Riccati
equation

AP+PA+Q-PBR'BP=0 (15)

By requiring the matrix Q to be positive definite, all the states will appear in the x'Qx

1




term. This ensures that all initially unstable poles are observable (which is a requirement
for stability). By defining H'H = Q and requiring [A,H] to be detectable, the closed loop
system will always be stable.

As was mentioned before, the designer has the freedom to chose the weighting
matrices Q and R. Equation (15) shows that the choice of Q and R will influence P, the
solution of the algebraic Riccati equation. Notice from equation (14) that the matrices
P and R play a role in determining the feedback matrix K. Since the feedback matrix K
shifts the poles of the system, the elements of Q and R become the design parameters for

pole placement.

LQR Stabiliry Margins [17: chapter 7]

An important property of linear quadratic regulators is that they guarantee robust
stability margins. In this section, both single-input single-output (SISO) and multi-input
multi-output (MIMO) systems are shown to have guaranteed margins. But first, a
relationship that is simply stated here but thoroughly derived in reference [17] is
introduced. By manipulating the regulator equations (1), (14) and (15), the relationship

T+ R7K(-jwl - A)'BR"'[T + R7K(wl - AY'BR] > 1 (16)
known as the Kalman Inequality can be derived.

SISO Margins. For a SISO system, the Kalman Inequality is

[1 + rk(-jwl - A)'br'?1[1 + r'k(Gwl - A)'br'] 2 | (17)
where the lowercase bold letters are vectors. This can be simplified to
1+ kGwl - Ay'b| 2 | (18)

A block diagram for the SISO system is shown in figure 2. The closed loop transfer

12
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function of a SISO system is
- GGw
TFC'- T TGgwHGw (19)

where G(jw)=(wl-A)'b and H(jw)=K. The denominator of the transfer function for this

system is known as the return difference function and is given by 1+k(jwI-A)'b.

r=0 X
% s gwi - Ay'b

\4

Figure 2 LQR SISO Block Diagram

The Kalman Inequality in equation (18) implies that when the open loop transfer function
k(jwl - A)'b (or GH) is plotted on a polar plot, the magnitude is always outside a unit
circle centered at the (-1,0) point. In other words, the allowable region for LQR is
outside a unit disk centered at the (-1,0) point. On the polar plot, the intersection of the
open loop plot and a unit circle centered at the origin gives the phase margin (PM). The
maximum gain margin (GM) is defined as the amount the gain can be increased before
the system goes unstable (or on a polar plot, when it crosses the (-1,0) point). In LQR

design, the system will not go unstable because the plot cannot enter the unit circle. This

13




is easier to see with a picture. In figure 3 the minimum GM is at point A and the
minimum PM is measured from the real axis tO the lines going through points B. The
GM must always be greater than 1/2, which is inverse of the point where the polar plot
crosses the real axis (or the amount the gain can be changed before the plot moves from
point A to the (-1,0) point). Remembering that LQR is restricted from entering the dotted
unit circle shown in figure 3, the smallest PM possible is the 60° angle measured to point
B. This shows that the guaranteed stability maigins for LQR are
1/2 < GM < oo (20)
60 "< PM <60 ° (21)
MIMO Margins. In the MIMO case, the margins are first shown for R=I, and
then extended to include any choice of R. For a MIMO system with R=1I, the Kalman
Inequality reduces to
1+ KGwl - A)'B][I + KGwl - A)'B] 21 (22)
This relation holds true if and only if the minimum singular value of the return difference
matrix is greater than or equal to one. That is
o [T+ K@Gwl-A)'B] 21 (23)
The gain and phase margins defined for the SISO case do not extend their usefulness to
MIMO systems. More meaningful stability concepts called independent gain and phase
margins are defined by Ridgely, Banda. and Yeh. They give the following definition:
Independent gain margins are limits within which the gains of all feedback
loops may vary independently at the same time without destabilizing the
system, while the phase angles remain at their nominal values.
Independent phase margins are limits within which the phase angles of all

loops may vary independently at the same time without destabilizing the
system, while the gains remain at their nominal values [17:3-73].

14
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Figure 3 Polar Plot of LQR Margins

15




The independent gain and phase margins for a MIMO system are given by

' <igM< !

24
l+ax I-a (24)

and

2sin’ (5) < IPM < 2sin’ (%) (25)

< <

where a = minimum singular value of the return difference. From equation (23), the
smallest value of o is one. Using a=1 in equations (24) and (25) give, as in the SISO
case, guaranteed independent margins of
172 < IGM < o0 (26)
-60° < IPM < 60° 27)
Safonov and Athans [19] proved that these margins are the same for a general diagonal
R matrix for the special case when Q > 0 and all perturbations in the various feedback
loops are noninteracting. For this case, any choice of R could be used since a
nondiagonal matrix can always be replaced with a diagonal equivalent. If either of the
two constraints are violated (which they typically are), the only form for R that gives the
guaranteed stability margins is R = pl (where p is any scalar).

The guaranteed stability margin property of LQR is very desirable for the pole
placement problem. However, the relationship of the weighting matrices of LQR to the
location of the closed loop pole is not well understood. One method of placing poles
with LQR is to vary Q and R by trial and error and watch the movement of the poles,

but this is not very efficient. In the next section, an algorithm is presented that will find




the Q and R matrices that places the closed loop poles as close as possible to a set of

desired poles thus simultaneously obtaining pole placement and stability robustness.
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L. Development of a Robust Pole Placement Algorithm

The important properties of ensuring a system is stable and has guaranteed
margins are desirable advantages of LQR. In this section, an algorithm is presented
which finds appropriate LQR weighting matrices to allow the closed loop poles, placed
with the LQR technique, to approach a set of desired poles. If a desired pole is outside
the allowable LQR region, the algorithm finds the pole inside the LQR region (the
achievable pole) that is closest to the desired pole. The algorithm also allows a weighting
to be placed on the achievable poles which forces the higher weighted achievable poles
closer to the desired poles. This can be an advantage in third or higher order systems,
since in higher order systems the LQR region depends on the location of each pole. The
algorithm tries to minimize the distance between desired and achievable poles but might
not be able to place all poles exactly. If a certain pole has a heavier weighting, the
algorithm tries to place it closer to the desired pole. When the weighted pole is shifted
closer to its desired location the LQR achievable regions change, causing a shift in the
other non-weighted poles away from their desired locations. Although the algorithm may
not give the exact overall desired pole spectrum, it gives the designer the ability to
enforce a required pole placement. The algorithm also delivers a system that is robust,

stable, and close to the required pole specifications.

Defining the Problem

Using LQR design, the closed loop system is




x =(A-BK)x (10)
with the optimal feedback matrix defined as

K = R'BP (14)
Using this feedback the closed loop system is

x =(A-BR'B'P)x = A'x (28)
and the closed loop (achievable) poles are the eigenvalues of A’. Thus, the closed loop
eigenvalues depend only on Q and R (since P is a function of Q and R).

The goal of the algorithm is to minimize the cost function

o
*

D VI AACPERE (7)
where the pole weig}-lts V, are chosen by the designer. In the LQR problem, the state
weighting matrix is required to be positive semidefinite (Q 2 0) and the control weighting
matrix positive definite (R > 0). Q can be made positive semidefinite by defining
Q=H"H. Likewise, R can be made positive definite by defining R=M'M and requiring
M to be square or tall (i.e. more rows) and have full column rank. Since only a special
case upholds the guaranteed stability margins for a diagonal R, let R be defined as pl.

As mentioned before, the system is always stable if the pair [A,H] is detectable.

If Q and R are varied by giving small perturbations to H and M, the response of

oJ* oJ:
and
0H oM

search technique will find the minimum value of J° when .(;_‘;T and Z—JM is smaller

the pole difference cost function J° can be determined by . A gradient

than a preset tolerance.
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Algorithm
The Algorithm to place robust stable poles is given by the following steps:
1) Define the problem by specifying A, B, and the desired pole locations.
2) Choose the pole weighting parameters V,.
3) 1rovide an initial guess for H and p (since R=pI).
4) Calculate Q and R.
5) Solve the Riccati equation and find the gain matrix K.
6) Calculate the achievable poles.
7) Calculate the pole difference cost function J.
8) Starting the second time through, check to see if the magnitude
oJ: 0J:

— , — and [J'«-J',,| are less then a prescribed tolerance
oH oM

(where k is the iteration number). If so stop.

of

9) Perturb H and M and go to step 4.

Using the Algorithm With MATLAB

All the examples were run using MATLAB on a Compaq 286 computer ora VAX
11/780. MATLAB is a powerful controls software package that allows the user to write
custom macros (functions) or “m” files that can be integrated with other MATLAB
routines. Six new "m” files were written for the execution of the algorithm. The function
FMINS is also used for the gradient search. The six “m” files are described below:
1. LQRPP - Linear Quadratic Regulator Pole Placement is the main body for the
algorithm. The designer calls this function and sends the A and B matrices, the desired

pole placements, and the pole weighting. It returns the achievable poles, the gain matrix
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K. and the weighting matrices Q and R. It assigns the initial values to H and p (for Q
and R), sets up the plotting feature, and initializes the gradient search by calling FMINS.
2. PPFUNC - Pole Placement Function is the function that is minimized by the
gradient zearch routine (FMINS). This function calculates the eigenvalue difference and
includes any pole weighting specified by the designer. Care is taken to direct the
achievable poles toward the closest desired poles. Each achievable pole calculated during
the gradient search is plotted by this function.
3. PPMAKEH - Pole Placement MAKE H is a function called by PPFUNC to make
the symmetric H matrix from the vector that is being perturbed.
4. PLOTINIT - Plot Initialize is called from LQRPP to set up the plot axis size and
plot the desired poles.
5. PPINIT - Pole Placement Initial is called by LQRPP to set up a vector containing
the upper triangular values of an nxn identity matrix. These values are sent to PPFUNC
to form the initial Q and R matrices.
6. STARTPP - Called by LQRPP to define global variables.
Use is made of MATLAB's gradient search routine that employs the Nelder-Mead
simplex algorithm [19]. Also, MATLAB’s powerful graphing capability is used to plot
points of the gradient search as it converges to the achievable poles. Both initial guesses
of H and M are taken to be the identity matrix 1. All the "m” files used to run the
examples in the next section are included in appendix A.

As the example problems got larger than third order, the run time on the Compaq

286 took one to several hours. In particular, the sixth order F-4 example ran for
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seventeen hours before the PC ran out of memory. The VAX, however, was usually a
factor of six faster than the PC; the F-4 example took only three hours to run and the
third order example finished in ten minutes (clock time). On the higher order examples

the plotting feature was turned off to speed up the run time.




IV. Examples

Five examples are now presented to show the effectiveness of the robust pole

placement algorithm.

Example 1 - First Order SISO Case
The first order SISO is included as an example because the LQR regions and the
performance index can be found in closed form. The closed form solutions allow a
convenient check for the algorithm’s solution.
Problem Setup. The first order SISO case can be formulated by letting the A
matrix and b vector be scalars. Then the open loop state space description is
X =ax + bu 29
Using the full state feedback u=-kx, the closed loop system is
X = (a- bk)x (30)
The closed loop poles or eigenvalues are
det(Al -a + bk) = 0 (31)
or
A, = a-bk (32)
Thus, the solution to the differential equation in (30) is simply
x = x e =xe*™ (33)
where x_ is an initial condition for x. For the optimal solution, k is found from the

Riccati equation; but k can also be found in a closed form solution from the quadratic

performance index. Putting equation (33) into the feedback equation gives
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u = -kx e (34)

Combining equations (21) and (4), the quadratic performance index is

J=x L“’ (g + ke ™" dt (35)
_ on(q + 1k3) J‘O” ele bR g (36)
‘(q-Tk? -
= X,(q-1K?) [el(a—bk)t]o 37
2(a-bk)
~x2(q +1k?)

= _—__  (kis always chosen such that a-bk <0) (38)
2(a - bk)

Since all vanables but k are constant, J(k) can be minimized by taking the derivative with

respect to k and setting it equal to zero

_=0=k2-(i)k—(i) (39)

For simplicity, with no loss in generality let b=1. Thus, the optimal feedback gain k

is

k= o2l (“0)

ol

For the pole placement method in this report, the control weighting matrix r is chosen to
be p. In this example some insight can be gained by watching r vary. With the optimal

k given by equation (40) and letting b=1, the optimal closed loop pole is
Ay =—a3+% (41)

Note that the closed loop pole is always negative, so the system will always be stable.

Now let g or r in equation (41) approach infinity




oo
9= ¢l opt -

(42)

— gl
r_—’w x'(/ Upl - )a ’

As gq—-o° the system gets faster and the closed loop poles move further to the left. This
demonstrates that q is indeed the weighting for the speed of response term - increase q
and the system gets faster. On the other hand, the value of r determines the control
effort. If control is expensive, the designer would make r big. From equation (42), as
r—oo the closed loop pole is put at the negative absolute value of a. Thus, if the open
loop system is stable and r—oe, the pole does not move and no control is used. If the
open loop system is unstable, the optimal solution is to shift the pole to its stable mirror
image.

Equations (40) and (41) show that this example is really just a one parameter
system that depends on % . By letting .‘:. =¢ and varying o from zero to
approximately infinity (o # oo since r # 0, r=0 would signify unlimited control power),
the achievable regions for the closed loop poles can be found. By looking at the open

loop transfer function

k
ghol = kom(S] -a)\lb = Ul; (43)
S—

the open loop pole is located at a. A root locus for the LQR achievable poles is drawn
in figure 4 for the stable and unstable case. Observe that both closed loop systems are
stable (as they had to be) and the locus can not enter the area between zero and point -a.
That region is restricted for all closed loop poles regardless of the choice for Q and R .

Since the cost function that was minimized was the LQR performance index, the only
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Figure 4 Root Locus for LQR Achievable Poles
allowable closed loop poles are to the left of point -a. To see why, look at the gain and

phase margins for the system. From equation (43), the margins are calculated as

k
20 log| -
a
k(:m -a’
180 -tan™'{ ¥~
-a

where GM is in dB and PM is in degrees. If a pole were placed in the restricted region,

GM

PM

it would violate the guaranteed phase margin property of LQR.

Now that the allowable regions of LQR are known, consider the two cases of a
stable and an unstable open loop pole. For each case, let the desired pole be
=a-k (44)

A'dc ~

so that
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k =a- AA'dc.\ (45)
Stable Case. Letting a=-5 and A, =-7 gives

2
s+5

(46)
k, =v25-q -5

a-A,_=-5+7=2

gh, =

ol

It

solving for q gives
q=(k _+5¢°-25=49-25=24 (47)

opt

Then the achievable pole is

Ay = Ay = -Ya‘+q = -y24+25 = -7 (48)
The PM and GM are guaranteed to be at least 60° and -6 dB. From the Bode plot in
figure 5, the gain margin for k = 2 is infinite. This result implies that the system is stable

and robust for any positive gain.

Unstable Case. Letting a=5 and A,.=-7 gives

gh, = u
s-5

(49)

and

K, =y25-q +5 (50)

Solving for q gives

q=(k, -57-25=49-25=24 (51)
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then
A = ke = - lat+q = -25+24 = -7 (52)

The Bode plots for this system are shown in figure 6. The GM is now [-7.6, ] dB and
the PM is 65.4 degrees, which both meet the guaranteed margins as expected. An
interesting result in the unstable case is when the system uses the least control effort.
That is when the unstable pole is shifted to its mirror image. Figure 7 shows the Bode
plot for this case, where A,.. is now at -5. The stability margins are at [-6, ] db and 60
degrees- exactly the minimums guaranteed by LQR.

Algorithm Results. Using the results of the last section, the pole difference cost
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function can be expressed as

J' = (h, +Ya'+q ) (53)

where the pole weighting parameter V is not necessary since there is only one pole.
Since A, and a are fixed, J* is a function of q only. Taking the derivative with respect
to q and setting it equal to zero gives the minimum. Solving for q gives

q = A, -a’ (54)
If the desired pole is in the achievable region, the function is minimized w. 21, J* equals
zero. When the desired pole is outside the achievable region, the function is minimized
when q equals zero; this will give the achievable pole location at -Va*

Both cases (stable and unstable) were run on MATLAB using the "m” files listed
in appendix A. Figures 8 and 9 show the algorithm plot for the gradient search for the
best achievable pole. The process starts with the initial value of q=1.

For all cases the algorithm successfully places the pole at the exact closed form
location. If the desired pole were in the restricted region between zero and minus five,
the achievable pole should be placed at negative five. Figure 10 shows this to be the
case. Table I compares the results from the algorithm with the closed form solutions.
The closed form solutions for the second unstable case were calculated the same as the

other two cases.
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Table I First Order SISO Results
]

Method a Ay Aok Kop q

Stable )

Open Loop Algonthm -5 -7 -7 2 24
Pole Calculated -5 -7 -7 2 24
Unstable Algorithm 5 -7 -7 12 24
Open Loop

Pole Calculated 5 -7 -7 12 24
Unstable Algorithm 5 -4 -5 10 0
Open Loop

Pole Calculated 5 -4 -5 10 0




Example 2 - Second Order SISO Case

As the order of the problem increases, the allowable LQR regions become more
complex, but with the second order case the regions can still be calculated in closed form.
This allows a check for the algorithm to see if the achievable pole is indeed the closest
point in the LQR region to the desired pole.

Problem Setup. The second order SISO problem can be formulated by applying
a force to a frictionless mass as depicted in figure 11. The equation of motion for this
system is

u=miz (55)

By letting x, = z and x, = % the state space representation is

X, {0 ]J X, {:O:t
= +{, (u (56)
X, 00 X, -

@] @]

u=mz

Figure 11 Second Order SISO Example
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With m=1, the system is defined as

X =[8 (l)}x +[?]u = Ax + Bu 57

A block diagram of the system is seen in figure 12, where the full state feedback is

1

u = -[k, kl]{i'J - -Kx (58)

Since u = % , equation (58) can also be expressed as

i+kzi+kz=0 (59)
which is the characteristic equation for the system. To see this, look at the transfer
function method for finding the characteristic equation. For the system in figure 12, the

characteristic equation is
1+gh =0 (60)
or

| -K[sI-A]"'B =0 (61)

Expanding equation (61) gives

sOl 101]_1s -1
aon IR
s 1
s1-a]" = 198 (63)
7

(s1-A]"'B =

t
=
n'— l'l_
-

|
} - (64)
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Figure 12 Block Diagram for Second Order SISO

= k K,
Kisl-A]"B = [k k]| |= L+ 22 (65)
! 2 S

s

So the characteristic equation is (from 1+gh=0)

k, Kk
l-—+_2=0 (66)
S S
or
sS+ks+k =0 (67)

which is the same as equation (59) expressed in the Laplace domain.
A typical second order system has the form
s~ 2lws + w, =0 (68)
where C is the damping ratio and o, is the system’s natural frequency. This example can

be made to look like equation (68) by defining k, and k, as
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k, = o, k, = 2o, (69)

The open loop system (gh) is K[sI - A]'B, or
ks

gh (70)
SZ
Using k, and k, from equation (69) and shifting to the frequency domain gives
200 jo - o
gh(jo) = 71

Y

_u)‘-

ey > . . —_ w .
Dividing through by w,” to normalize the problem and defining ® = . results in
o

n

+2Cwi
_ | _C’m) (72

gh
—0) -

Normalizing the problem this way will show that the optimization problem is not a

function of frequency (w,). The open loop system can be represented in phaser form as

gh(im = Y7959/ (1an1 205 - 180 deg) (73)
—

To find the PM for this system, set the magnitude equal to one (|gh|=1) and solve for

the frequency. Choosing the real solution for the frequency gives

B = Y20 @l - 1) (74)
Putting this value into the angle term of equation (73) and subtracting from -180 degrees
gives the PM

PM = tan"' 2C{2(f + (4T + 1)4]; (75)
By normalizing the frequency, the system has been reduced to a one parameter problem.

Finding the LQR Regions. On a Nyquist plot, LQR design prohibits the locus of
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points of GH(jw) from entering a unit circle centered at (-1,0). In figure 3, if the plot of
GH(jw) were exactly on the dotted unit circle (centered at (-1,0)) LQR would have its
minimum stability margins. From vector addition, the radius of the dotted unit circle in
figure 3 is 1+GH. Thus, a mathematical constraint on a Nyquist plot from LQR design
is

(1 + GH)| 2 1 (76)

In this second order example,

e SRR S0 2080l o
s* s*

And in the normalized frequency domain

(1+gh) = 1*25@;‘62 (78)

-0

Putting equation (78) into the constraint equation (76) leads to

0 +@rF-u’ 120" (79)
or

(A4 -2a°+120 (80)
This constraint will hold true for any frequency only if

4t -220 (81)

Thus, the damping ratio must meet

c>_1 - 07071 (82)

7z

The relationship of C and w, to poles in the complex plane is depicted in figure 13.
Using the relation cos 'C = 6, where 6 is measured as in figure 13, the achievable region

for LQR design is where 8 < 45°. This result is plotted in figure 14. Now that the LQR
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achievable region is known, the desired poles need to be chosen. Consider the following
system specifications:

* peak overshoot M, < 0.456

* rise time t, < 0.44 seconds

* settling time t, < 4.6 seconds

* robust system
Then, to just meet the system performance requirements, o, = 4.12 and { = 0.2425
[20:sect 2.7.4]. From the diagram in figure 13, the desired pole is found to be at A,,, =
-1 + 4j. The desired pole meets the first three specfications, but has a PM of only 27°.
To find the best achievable pole (one that is robust and closest to the desired pole), the
LQR barrier must be examined. Using the top half of the plot in figure 14, the equation

of the LQR barrier is

y=_1__ 1 x = y=-x (83)

The point in the LQR region that is closest to the desired pole is at the intersection of the
barrier and a line perpendicular to the barrier passing through A,... Thus, the equation of
the line perpendicular to the barrier and passing through -1+4j is

y=x+5 (84)
The intersection of equations (83) and (84) yields the achievable pole, or

Ao = -25+25) (85)
The achievable pole gives the following system characteristics:

« M, = 0.04
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*t. = 0.51 seconds

* t. = 1.84 seconds

« ¢ =0.7071
*w, = 3.54
* PM = 65.5°

The Phase Margin was calculated with equation (75) and can be verified with the Bode
plot in figure 15. The Nyquist plot in figure 16 shows that the system does stay outside
the unit circle centered at (-1,0).

Notice that the PM is not exactly 60°. The LQR design guarantees only a
minimum PM of 60°, but larger margins are often achieved. That is precisely the case

in this example. To show why LQR can not produce a PM of 60° for this system,

150 L ... Maginde

dB
N
S

10 00 100 0 00100 10°

___Phase

-120

de grees

-140

10 * LE 10" 100 10 10° 10*

frequency

Figure 15 Bode Plot for Second Order SISO System
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equation (75) was solved for { (with PM=60°). The value {=0.612 was found which
corresponds to the barrier angle 6=52.2°. Using the same analysis of dropping a
perpendicular line from the desired pole to the barrier yields A = -2.3 + 2.98j for a
PM=60". This gives w,=3.76 which allows the gains and a Nyquist plot to be calculated.
The Nyquist plots for the LQR system and the PM=60" system are shown in figure 17.
Notice that the PM=60" plot violates the unit circle and thus can not be generated by
LQR design.

Algorithm Results. The algorithm was run on MATLAB and generated the plot
in figure 18. In the plot, x marks the desired pole while o shows the achievable pole.
Notice that the points calculated during the gradient search do not move outside the 45°
lines. Table II gives the results for this example. The gains for the closed form solution
were calculated with equation (69). The results show that the algorithm is able to

accurately find A,,. The MATLAB "m”-file used to solve the second order SISO system

ach*

is included in appendix A. Run time on the Compaq 286 was 4 minutes.

Table 11 Second Order SiSO Results
o e e ]

}"ach K Q
Algorithm 2.5 +2.55 [12.5 5] 156.2 0
-2.5-2.5j 0 0
Calculated -2.5 + 2.5j [12.5 §] not calculated
-2.5-2.5j
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Example 3 - Third Order SISO Case

In the second order example the LQR barriers could be found in closed form since
the solution depended only upon {. The third order system cannot be reduced to a single
parameter and solved in closed form, but the results of the previous sections show that
the technique used is accurate. Three cases are presented in this third order example; the
first chooses desired poles inside the LQR region, the second shows the effects of
weighting an actuator pole and the effects on the other closed loop poles, and the third
case examines the effects on a pole that is both outside the allowable LQR region and
close to the imaginary axis.

Problem Setup. If an actuator is added to the second order problem it becomes
a third order system. The system can be modeled as in figure 19. Letting m=1 and

defining the states as

R 2 1 z

I}

!

I

|

|
«—

Figure 19 Third Order System Block Diagram
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. N u
where 1 = (-u+u)a and Z = —
m

the state space representation is

010 0

x =10 0 1 |x +[0fu, (86)
00 -a a

u, = [k k, kJx (87)

The actuator pole is set by physical constraints, but for the sake of this example let a=1.
Then, from [+K[sI-A]'B, the characteristic equation is

sS'+(1+k)s +ks+k =0 (88)
Factoring the characteristic equation gives three roots, one from the actuator and two from
the plant.

Case 1. For this case the desired poles should be within the LQR achievable
region. In the second order example, the barriers made 45° lines with the real axis. Since
the third order LQR allowable regions are unknown, choose a desired location within the
second order system region. Let

Aee=[-0.5+0.5] -0.5-0.5] -1] (89)
Using the function PLACE on MATLAB, the closed loop poles can be placed in the
desired locations and the gain matrix K calculated. The resulting gains are

K=[05 1.5 1.0] (90)
With these gains, the characteristic equation is

s+ 25+ 1.55+05=0 91)




whose roots are the same as A, From the Bode plot in figure 20, the PM=65.5" and the
GM=co. The system is within the limits guaranteed by LQR design, so the algorithm
should place the poles exactly. The algorithm generated the plot in figure 21 and did

achieve the desired pole location. To achieve the desired poles, the Q and R are

2073 0.829 -0.003
R =8293 and Q =|0.829 2.067 -0.006
-0.003 -0.006 0.0

Case 2. In this case, the desired poles are chosen outside of the LQR allowable
region. The first run is done with no weighting on the actuator pole, and the second run
weights the actuator pole three times as heavily as the other poles. The desired poles
need to lie outside the 45° second order system barrier. Thus, let

Ay, = [-3+5) -3-5) -10] 92)
Using the function PLACE on MATLAB gives

K =134 9.4 0.6] (93)
For these gains, the Bode plot in figure 22 shows the PM=53.34". The algorithm was run
on MATLAB to find the LQR achievable poles and plotted in figure 23. The x’s denote
the desired poles, the dots are the achievable pole choices generated during the
algorithm’s gradient search, and the +’s are the actuator pole choices from the algorithm.
It can be seen that the desired poles were outside the LQR allowable region. The
achievable poles and phase margin are

Ao = [-3.48 - 4521 -3.48 + 4.521 -10.78] (94)

PM = 62.45 95)
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To see the effects of weighting a pole, the same desired poles were used but the
actuator pole was weighted three times as heavily as the plant poles. The algorithm found

the best LQR achievable poles as

A, = [-3.62+4.30i -3.62-4.30i -10.53]

The gradient search from the algorithm is plotted in figure 24. Again, the x’s are the
desired poles and the dot and plus symbols denote the gradient search attempt to find the
best achievable pole. All achievable pole choices on the plot are within the LQR
allowable region, and the pattern of the achievable pole choices gives an outline for the
LQR barriers. However, the LQR regions depend on the location of all the closed loop
poles, so the algorithm plot can not give a true estimate of the LQR barriers. Using the
gains found by the algorithm, the Bode plot shown in figure 25 was generated.

Table I lists the results of the three different runs for case two. Notice from
Table I that the Phase Margin increased 14.5% for the non-weighted actuator condition
and 16.3% for the weighted actuator condition. The weighted actuator pole moved 2.5%
closer to the desired location compared to the non-weighted actuator pole, but at the
expense of the other poles. When the actuator pole was weighted, the other two plant
poles were 1.5% less in magnitude (v,) and 4.8% less in damping angle (6) from the non-
weighted locations. There is a trade off in pole location accuracy, and the designer must
decide if the benefits gained from the weighted pole outweigh the penalties to the

remaining poles.
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Third Order System - Weighting on Actuator
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Figure 24 Algorithm Plot - Case 2 ( Actuator Weighted)
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Figure 25 Bode Plot for Achievable Poles - Case 2 (Actuator Weighted)
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Table III Third Order System Case 2 Results

Pole Location Gains PM
Desired Pole Location -3 %51 [34 9.4 0.6] 53.34
-10
No Weighting on Poles -3.48 = 4.52i [35.35 10.82 0.78] 62.45
-10.78
Actuator weighting -3.62 ¥ 4.301 [33.29 10.79 0.78] 63.75
-10.53

Ccse 3. Like case 2, the plant poles are chosen outside the LQR achievable
regions. They are also chosen with poor PM to demonstrate a large increase in PM with
a small shift in position. The actuator pole is chosen at a location of -2.5. The desired
plant poles are A, =[-.2+.751 -.2-.75i]. Using the MATLAB function PLACE, the gain
matrix for the desired poles was found. This allowed a Bode plot and the PM to be
found. The Bode plot for this system is seen in figure 26. Running the algorithm to
locate the achievable poles produced the plot in figure 27. In this case, the Q and R
matrices from the achievable poles in case two were used to reduce the run time. The
Bode plot for the achievable poles is in figure 28. Using the function MARGIN on
MATLAB the PM was found to be 60.74°. This can
also be seen from the Bode plot in figure 28. The results are compared in table 1V.
Notice that for a 6.2% penalty in magnitude (w,) and a 24.5% smaller damping angle ()
there is a 110% increase in PM. Figure 29 shows the location of the plant desired and

achievable poles.
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Table IV Third Order System Case 3 Results

Figure 28 Bode Plot for Achievable Poles - Case 3

Pole Location PM
Age. -0.2 - 0.75i 28.90°
-0.2 + 0.75
2.5
LY -04 - 0.61i 60.74°

-0.4 + 0.61i
2,77
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Figure 29 Comparison of Desired and Achievable Poles

Example 4 - Comparison with Harvey and Stein method [15]

Harvey and Stein present a procedure to asymptotically place eigenvalues and
eigenvectors using optimal feedback. Their technique is to formulate the state weighting
matrix Q such that the transmission zeros of the system are located at the desired pole
locations. Then, as the control weights tend to zero (or the feedback gains increase to
infinity), the closed loop poles migrate towards the desired pole locations.

This technique has one major fault; the number of transmission zeros available to
be placed is n-m (# states - # control inputs). As some of the closed loop poles migrate
towards the desired locations, others head off to infinity. The poles that head off to

infinity happen to be the actuator poies. Harvey and Stein’s solution to this problem is

54




to monitor the actuator poles as the gains are increased and choose the gains that put the
actuator poles at their required locations. They use an F-4 aircraft inner loop lateral axis

design example to demonstrate their procedure. The states and controls are

,U 1
—

»

stability axis roll rate

stability axis yaw rate

angle of sideslip

bank angle (96)
rudder deflection

aileron deflection

< ™

2]

-

(=g o]

19| rudder command 97)
4 7 |8, |aileron command

which gives
_746 387 -129 0 952 605| [0 o]
024 -174 431 0 -1.76 -.416 0 0
006 -.999 -.0578 .0369 0092 -.0012 0 0
X | 0 0 0 0 0 0 0
0 0 0 0 -20 0 20 0
00 0 o o0 -0 | [0 10]
or
x =Ax + Bu

From Mil Spec 8785B, the desired poles are
* Roll subsidence mode -4.0
* Dutch roll mode -0.63 = 2.42j
* Spiral mode -0.05

and the actuators lie at
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* Rudder actuator -20
* Aileron actuator -10

Two points must be made about the Harvey and Stein example:

1. The control weighting is defined as pR and the procedure is to let p tend
towards zero. But to allow the actuator poles to achieve the desired locations,
the procedure has to be iterated for many different values of p. In their
example, Harvey and Stein found that a value of p=0.0025 put the actuator
poles close to the desired locations. As p goes to zero the plant poles go to
the desired locations. But the actuator pole position determines the value of

p and hence the closed loop plant pole locations.

1§9)

Since the actuator poles head out to infinity as the gains are increased (or p
is decreased), Harvey and Stein modified the initial pole locations in the A
matrix. The open loop actuator poles were moved to (-10, -5) to allow
freedom to increase the gains before the actuator poles moved past the desired
locations. There has to be some play in the gains to allow the other poles to
migrate towards the transmission zeros, and Harvey and Stein modified their
example to start the actuator poles to the right of their desired locations.
When the F-4 data was run with the algorithm presented in this report, the A
matrix was changed back to the original actuator values (-20, -10) to reflect the correct
locations for the actuator poles. This example was run on the VAX using MATLAB.
Both the algorithm and Harvey and Stein were able to place all the poles close to their

desired locations. Figures 30 and 31 show the desired and achievable pole locations for
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both the algorithm results and Harvey and Stein’s solution. Table V compares the results
for this example. Notice that Harvey and Stein achieved poles close to the desired plant
locations, but the algorithm was 12% closer to the desired aileron actuator pole and 4%
closer to the desired rudder actuator pole. The robustness for a MIMO system can be
measured using singular values as discussed in chapter 1. Both Harvey and Stein’s
solution and the algorithm’s solution were examined for robustness using singular values,
and the singular value plots for these two cases are shown in figure 32. Two robustness
tests can be checked using singular values. By defining K'[sI-A]'B=T" (where the *
depends on which case is being tested), the tests are
o[1+T"120dB

(98)
o[1+T"'}>-6dB

These first test is plotted in figures 33 and 34, and the second test is plotted in figures

35 and 36.

Table V Example Four Results
]

Harvey and Stein Algorithm
-3.810 -3.998
-0.049 -0.091
Aoct -0.727 = 2.358j -0.669 = 2.365)
-10.43 -10.025
-22.44 -20.053
K [[132 .882 -1.576 -.026 -.681 .0261 | [-.306 -1.389 .729 .039 .107 -.089]
|-.524 -.42 2.827 -.021 .013-86 ] || .409 .858 -.060 .035 -.044 .239]
PM [-53°, 537] [-60°, 60°]
GM [-5.56 dB, 19.7 dB] [-6.02 dB, - dB]

...
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Figure 30 Comparison of Desired and Achievable Poles
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Figure 31 Desired and Actuator Poles - Expanded View
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Figure 32 Singular Value Plots for Example 4

Using the minimum singular values from figures 33 and 34, the independent gain and
phase margins were calculated with equations (24) and (25).

As was pointed out in chapter II, R can be diagonal for guaranteed stability
margins only for a special case. That happens when the disturbance matrix is diagonal
or each one is independent of the others. If the disturbances are not all independent, the
restriction is even tighter; R must equal pl for guaranteed margins. In this example,
p=25.38. When R is allowed to be diagonal, where the diagonal elements do not equal
each other, the guaranteed robustness breaks down. This proves that the disturbances in
the various feedback loops interact with each other [19]. A plot of robustness test 1 for

the diagonal R matrix
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Figure 33 Minimum Singular Value Test | for Harvey and Stein Example
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Figure 34 Minimum Singular Value Test 1 for Algorithm
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o 02424 0
| 0 08630

is given in figure 37. The IPM is reduced to (-50.4°, 50.4°), well below the guaranteed
minimum of (-60°, 60°). However, there is a benefit for the reduction in stability margins
- the achievable poles were placed exactly in the desired locations. Using a diagonal R
also gives one more parameter to design with. Let’s go one step further. What if R was
allowed to be symmetric? This would give three variables in R that could be changed,
thus adding two extra degrees of freedom to the original problem. The algorithm was

modified to let R be symmetric and returned

. 0.0805 0.0581
~ 10.0581 0.0563

The first robustness test in equation (98) is plotted in figure 38 for this symmetric R
matrix. All the poles were placed in the desired location, but the margins were reduced
even further; the IPM = (40", 40°) and the IGM = (-4.5 dB, 9.97 dB). If the designer
had some freedom to relax the stability margins, a choice of a diagonal or symmetric R
matrix could be used to place all the poles in their desired locations. But some care must
be taken if R#pl. If any one value in R is much lower than the others, the corresponding
parameter in the control vector would have unacceptably la-ge input amplitudes [7:124].
The cross coupling also has constraints. If Z represents unidirectional cross coupling,

then for a diagonal R
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o Z(Z) < )\'mm(R)

A (R)

max

This is mentioned to highlight some of the potential problems that occur when R#pl. In
this example all the elements in R are of the same order, but each design case is different.
The pole placement accuracy could outweigh the problems encountered with a diagonal
or symmetric R.

The Harvey and Stein technique placed the zeros in the desired pole locations by
fixing Q and varied R to move the poles. The algorithm allowed both Q and R to vary,
and achieved better results in both pole placement and robustness. Harvey and Stein’s
results shown in table V were calculated for their modified A matrix. If their gains were
applied to the actual aircraft A matrix, their actuator pole locations would be further left
and the stability margins would be worse. This example again demonstrates the pole
placement accuracy using the method presented in this report. In the next example, an
aircraft with open loop level 11 flying qualities is examined to see if the algorithm can

improve flying qualities with a robust controller.




Example 5 - Aircraft Flving Qualities Improvement

This example demonstrates the algorithm’s ability to improve the flying qualities
of an aircraft. The aircraft in this example is a fictitious model similar to an A-4D, with
characteristics primarily obtained from reference [21]. Appendix B lists the stability
derivatives used in this example. Considering the longitudinal axis with only the elevator

deflection as input, the state space representation is

200129 -3.7292 0  -32.2] [ y

 -0.0002 -0.8167 0.9984 0 L 0

* 7 1-0.0003 -1.6903 00563 0 |  |1.56|
0 0 10

where

-u-‘ velocity

&1 angle of attack
q pitch rate (99)

0 | pitch angle
and
u=9, (elevator deflection) (100)
The open loop poles for this system lie at
-3.84 2 1.19j (short period)
-0.0026 = 0.03971j (phugoid)
which give
Cp=0307  o,,=125

Cy = 0065 o, =0.04
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This flight profile (cruising flight) is classified as category B by the Mil-Spec users guide
[22:14]. For category B, a levei I flying qualities rating is defined when 0.30<C_,<2.0 and
C.»>0.04. The short period frequency requirements are given in figure 39. The regions
of flying qualities levels shown in figure 39 are for nfa, where n is the load factor

[23:538-540]. Roskam [23] gives an approximation to n/a as

N T (102)
a

where Z, = Z u. With the data in appendix B, n/a is found to be 16.11 g’s/rad. Plotting
o, vs 16.11 in figure 39 falls within the level I region (point A). The values for C, and
Cy fall within the level I range.
The goal is to make the system both level I and robust with full state feedback.

Thus, the desired poles were chosen to give level 1 damping and place the frequency
requirement in the center of the level I region. Point B in figure 39 corresponds to the
desired short period frequency. The desired poles and associated { and , are

-1.12 = 3.505 Cp=0305 @, =367

-0.0056 = -0.073j] C,=0076 «,, =0.073
Using PLACE on MATLAB, the unique gains were calculated that gave the Bode plot
for the desired poles in figure 40. The gain and phase margins from figure 45 are
GM = o and PM = 38", The GM is fine, but the PM is not quite high enough. The
algorithm can not achieve the desired poles but it should get close. When this system
was run on MATLAB with the algorithm m-files, the achievable poles were found to be

-2.096 = 2.389j (short period)

-0.215 5 0.043j (phugoid)
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The natural frequency and damping are

Cp =0.6595 o, = 3.179

Con = 0.98 o, = 0219
which are all within the level I region and close to the desired values. In figure 39, point
C shows the short period frequency location for the achievable poles. The achievable
system Bode plot shown in figure 41 gives the GM== and the PM=68". Thus, using the

algorithm for pole placement gave a robust level 1 system.
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V. Conclusions and Recommendations

This report has examined the pole placement properties of linear quadratic
regulators as determined by the weighting matrices of the perfcrmance index. A n2w
eigenvalue difference cost-function to minimize the difference between sets of achievable
poles and desired poles was introduced. This led to the formulation of an algorithm that
employed a gradient search to cptimize the eigenvalue difference performance-criterion.
This algorithm gives a powerful method for selecting weighting matrices for pole
placement designs.

Five examples were used to demonstrate the algorithm. The use of simple systems
in the first two examples allowed closed form solutions which compared exactly to the
solutions of the algorithm. The third order example showed the effects of weighting a
desired pole. The heavier weighted pole was forced closer to the desired pole at the
expense of the less weighted poles. A method presented by Harvey and Stein was
compared to the algorithm given in this report, and the results show that the algorithm
accurately provided robust eigenvalues for a MIMO system. In the last example, the
algorithm was used to improve aircraft flying qualities. These examples showed that the
algorithm can simultaneously place desired poles and achieve stability robustness.

This algorithm only employed an eigenvalue optimization performance criterion.
The effects of optimizing both an eigenvalue and an eigenvector difference on achievable
pole location should be investigated. The full effects of the LQR weighting matrices on
pole locations is still not well understood. This algorithm could be modified to perturb

selected values in the weighting matrices to see the effects on the closed loop poles. One
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improvement that could be made is in the gradient search routine. The algorithm simply
uses the Nelder-Mead method on MATLAB which calculates gradients numerically, but
a more efficient method could be found. A possible way to increase the efficiency is to
use the eigenvalue difference weighting parameter to automatically weight the poles with
the largest eigenvalue difference. The m-files could undoubtedly be programmed more
efficiently, and a Foriran source code would be useful to users who do not have access
to MATLAB. This method is applicable to many flight control system design problems

and could be used to improve the robustness properties of existing systems.
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Appendix A. MATLAB m-files

Appendix A includes listings of the “m” files used on MATLAB to run the examples

presented in this report. The following MATLAB functions were also used but are not

included in this appendix:

FMINS - The gradient search minimization function in the MATLAB files.

PLACE - Used to find the gains required to place a pole at a desired location. This
function is in the Control System Toolbox files.

MARGIN - This function finds the gain and phase raargins for a given system. It is in
the Control System Toolbox files.

LOGSPACEA- A function in the MATLAB files used to generate a logarithmically
spaced frequency vector.

BODE - Located in the Control System Toolbox file and used to generate Bode plots.

function [ea,k.Q.R]=LQRPP(A,B,ed,V)

% LQRPP Pole placement using Linear Quadratic Regulator design.
% fea,k]=LQRPP(a.b,ed) will attempt to place poles in a
% desired location (ed). If the desired location is outside
% the allowable LQR region, LQRPP minimizes the distance
% between the desired pcles (ed) and the achievable poles (ea).
% A desired pole can be weighted heavier to indicate its
% relative importance. LQRPP will give a weighted pole
% priority in the pole placement routine. The technique is to use
% a gradient search to minimize the difference between the
% desired and LQR achievable poles for the system
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% x = Ax+Bu with full state feedback u = -Kx

%
% The required inputs are
% A - the state space A matrix
% B - the state space B matrix
%  ed - a vector containing the desired pole locations
%
% There is one optional input
% 'V - the pole weighting matrix (diagonal)
%
% There are four output arguments (the last two are optional)
%
%  ea- a vector containing the achievable poles
% K - the feedback gain matrix to get the achievable poles
%  Q - the LQR state weighting matrix
% R - the LQR control weighting matrix
startpp
a_s=A;
b_s=B;
ed_s=ed;
[n.m]=size(A);
[1.p]=size(B);
% assign initial valuesto v, q, and r
if nargin > 3, v_s=V;

else, v_s=cye(n); end
h=ppinit(n);
m=1; % initial value for rho
x=lh m}:
plotinit(n.ed_s)
H=fmins("ppfunc’.x,le-2);
fori= I:n

plot(real(ea_s(i)),imag(ea_s(i)),’og’)

end
title(*Gradient Search For Achievable Poles’)
xlabel('real’)
ylabel(’imag’)
pause
k=k_s:
ea=ea_s;
Q=q_s:
R=r_s;
hold off
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function J=ppfunc(x)

%  used by LQRPP to find the value of the eigenvalue difference cost function
%  This function calculates J and is called by the gradient search (FMINS) routine.

y/2

[s,t]=size(x);
[n,ma]=size(a_s),
[nb,mb]=size(b_s):
[nd,md]=size(ed_s);
xh=x(1:(s-1),1);
xm=x(s,1);
m=xm¥*eye(mb);
h=ppmakeh(n.xh);
q_s=h"*h;

k__s=lqr2(a s.b_s.q_s.,r_s);

-

ea_s=sort(eig(a_s-b_s*k_s));

%find the poles that are closest to each other and take their difference

eatmp=ea_s;

edtmp=sort(ed_s):

=1,

J=0;

while i <n
[nn,mm]=size(eatmp):;
z=abs(eatmp(!)*ones(nn,mm)-edtmp):
[vt.is]=min(z);,

% Find if there are any weighted poles
err=(ed_s-edtmp(is)*ones(nd,md));
[vp.ip]=min(abs(err));
J=)+vt"2*v_s(ip,ip)
eatmp=eatmp(2:nn);
if is==1, edtmp=edtmp(2:nn);

else if is==nn, edtmp=edtmp(1:(nn-1));
else, edtmp=[edtmp(1:is-1);edtmp(is+1:nn)).
end.end
1=i+1;

end

err=(ed_s-edtmp(})*ones(nd,md));

[vp.ip]=min(abs(err));

J=J+(abs(eatmp-edtmp))*2*v_s(ip.ip);

fori=1:n

plot(real(ea_s(i)),imag(ea_s(i)),’.r’)
end
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% startpp
%
%  Used by LQRPP to initialize the global variables used in the function

j=sqrt(-1);
global a_sb_sk_sq_sr_sea_sed_sv_s

function h=ppmakeh(n,x)
%
%  PPMAKEH is used by LQRPP to make the symmetric h matrix from a vector
% n is the size of the matrix and x is a vector that contains the upper triangular
% elements of the h matrix
s=1;
for i=1:n;
for j=i:n;
h(i,j)=x(s);
h(j.)=x(s).
s=s+1;
end
end

function plotinit(n,ed)
%  used with LQRPP to set up the plotting feature

axis('square”)
e=sort(ed),
if abs(real(e(n))) > abs(imag(e(n))), axisize=ceil(abs(real(e(n))))+2;
else axisize=ceil(abs(imag(e(n);))+2;
end
axis([-axisize axisize -axisize axisize])
plot([0 0],[-axisize axisize],”-b’,[-axisize axisize],[0 0],"-b")
hold on
for i=l:n
plot(real(e(i)),image(i)),’xg")
end
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function [f]=ppinit(n)

%  used with LQRPP to initialize the weighting matrices
%

h=n;
x=1;
fori=l:n
f(x)=1;
for j= 1:(h-1)
x=x+1;
f(x)=0;
end %j loop
h=h-1;
x=x+1;
end %i loop
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Appendix B. Data for the A-4D Aircraft

The following data is for an A-4D flying in level flight at 15,000 ft at mach 0.5.

u, (ft/sec) - 634.2

W (Ib) - 17,578
T, (1/sec) - 0.000225
X, (1/sec) - -0.01288
X, (1/sec) - -0.00588
X,. [(ft/sec)/rad] - 0

Z, (1/sec) - -0.1012
Z, 4. () - -0.001616
Z, (1/sec) - -0.818

Z.. [(ft/sec™)frad] - 0

M, (1/sec-ft) - -0.000407
M, ,. (1/f) - -0.000556
M, (1/sec-ft) -0.003
M, (1/sec) - 58.1

M, (1/sec’) - 1.56

The dynamic equations of motion are given on the following page.
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The equations of motion for the longitudinal axis are [23:172; 22:54]:

i-u X, +gh = X5

w-wZjya-Zu-uwZ a-(u+2)q =23

¢-Mu~uyMa+uMa+Mq=Md

6 =q
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